TO1-3PEG-Desthiobiotin Fluorophore

CAT.NOUNITPRICE
G9560.5 mg/ml (500 µl)
$195.00

Specifications


Description

RNA Mango technology is based on the specific binding of the RNA Mango Aptamer and a Thizole Orange (TO) bi-functional dye. The main features of this technology is the tight binding between the dye and aptamer (KD ≈ 3nM) , and the strong ~1000X enhancement of the dye’s fluorescence when bound to the Mango apatmer (Fluorescent enhancement FE=1,100).
The TO dye has a number of other desirable properties including:

  • small size
  • lack of toxicity
  • plasma and nuclear membrane permeability
  • short intracellular half-life
  • the accessibility of a broad wavelength range simply via substitutions and alterations to the TO structure

TO1-biotin is the standard variety of TO dye for RNA Mango experiments; other dye variants will also be available soon.

Watch RNA Mango in Action

Transcription reaction were carried out in 300 µL volumes using T7 RNA polymerase (400 U, 50U/µL, applied biological materials), 0.5 µM TO1-3PEG-Biotin (applied biological materials), in 8 mM GTP, 5 mM CTP and ATP, 2 mM UTP, 40 mM TRIS buffer pH 7.9, 2.5 mM spermidine, 26 mM MgCl2, 20 mM KCl, Pyrophosphatase (0.5 U, 0.1 U/µL, ThermoFisher Scientific), and 0.01% Triton X-100. To each sample, either water (Negative), 0.33 µM DNA template (Mango Transcription), or 500 nM final Mango III A10U RNA (Positive) was added. Samples were visualized in a blue light box, movie is played back at 30X speed.

 

The most advanced RNA tracking, visualization and pull down technology.

Technology for studying the diverse cellular roles of RNA has lagged behind the tools for studying DNA and proteins, but innovative researchers are working to change that! One such researcher is Dr. Peter Unrau of Simon Fraser University. He and his team have created RNA Mango, a novel technology with a number of useful applications.

SKUG956
Unit quantity0.5 mg/ml (500 µl)
Storage Condition

Stored at -20°C and protect from light.

Documents


Supporting Protocol
MSDS

    QC

      Other
      FAQs


      There are no FAQs for this product yet!
      References


      10
      • Shi J, Gao X, Tian T, et al. Structural basis of Q-dependent transcription antitermination. Nat Commun. 2019;10(1):2925. Published 2019 Jul 2. doi:10.1038/s41467-019-10958-8.
      • Trachman, R., & Ferré-D'Amaré, A. (2019). Tracking RNA with light: Selection, structure, and design of fluorescence turn-on RNA aptamers. Quarterly Reviews of Biophysics, 52, E8. doi:10.1017/S0033583519000064.
      • Alexis Autour, Sunny C. Y. Jeng, Adam D. Cawte, Amir Abdolahzadeh, Angela Galli, Shanker S. S. Panchapakesan, David Rueda, Michael Ryckelynck & Peter J. Unrau "Fluorogenic RNA Mango aptamers for imaging small non-coding RNAs in mammalian cells" Nature Communications. 2018 Feb;23(9):656. DOI: 10.1038/s41467-018-02993-8.
      • Panchapakesan SSS, Ferguson ML, Hayden EJ, Chen X, Hoskins AA, Unrau PJ. et al. "Ribonucleoprotein purification and characterization using RNA Mango." RNA. 2017 Oct;23(10):1592-1599. DOI: 10.1261/rna.062166.117.
      • Trachman RJ 3rd, Demeshkina NA, Lau MWL, Panchapakesan SSS, Jeng SCY, Unrau PJ, Ferré-D'Amaré AR. et al. "Structural basis for high-affinity fluorophore binding and activation by RNA Mango." Nat Chem Biol. 2017 Jul;13(7):807-813. DOI: 10.1038/nchembio.2392.
      • Cawte, Adam. et al. "Live Cell Imaging of Genomic Loci using Fluorescent RNA Aptamers." Biophysical Journal. 2017 Feb, Volume 112,Issue 3,69a. DOI: 10.1016/j.bpj.2016.11.416.
      • Jeng SC, Chan HH, Booy EP, McKenna SA, Unrau PJ. et al. "Fluorophore ligand binding and complex stabilization of the RNA Mango and RNA Spinach aptamers." RNA. 2016 Dec;22(12):1884-1892. Epub 2016 Oct 24. PubMed : 27777365.
      • Ouellet J. et al. "RNA Fluorescence with Light-Up Aptamers." Front Chem. 2016 Jun 28;4:29. DOI: 10.3389/fchem.2016.00029. eCollection 2016. Review. PubMed : 27446908.
      • Panchapakesan SS, Jeng SC, Unrau PJ. et al. "RNA complex purification using high-affinity fluorescent RNA aptamer tags." Ann N Y Acad Sci. 2015 Apr;1341:149-55. DOI: 10.1111/nyas.12663. Epub 2015 Jan 13.
      • Dolgosheina EV, Jeng SC, Panchapakesan SS, Cojocaru R, Chen PS, Wilson PD, Hawkins N, Wiggins PA, Unrau PJ. et al. "RNA mango aptamer-fluorophore: a bright, high-affinity complex for RNA labeling and tracking." ACS Chem Biol. 2014 Oct 17;9(10):2412-20. DOI: 10.1021/cb500499x. Epub 2014 Aug 21.