Ace-1 Cells

Cat. No.
T8280
Unit
1x10⁶ cells / 1.0 ml
Price
Inquiry

Worried about losing your cells due to contamination issues, thawing or growth difficulties or even a random freezer breakdown?

Enjoy peace of mind knowing that you can be covered under abm’s Cell Line Insurance

Sale of this item is subjected to the completion of a Material Transfer Agreement (MTA) by the purchasing individual/institution for each cell line. If you have any questions regarding this, please contact us at [email protected].

Cat. No. T8280
Name Ace-1 Cells
Description

Ace-1 cells were derived from a dog with spontaneous prostate cancer. Ace-1 cells metastasize primarily to the appendicular and axial skeleton after injection into the left cardiac ventricle in mice. Ace-1 cells can be xenografted to immunosuppressed laboratory beagles. The Ace-1 cell line demonstrates marked epithelial-mesenchymal transition and produces mixed osteoblastic and osteolytic metastases. Cells can be used to develop an experimental model of prostate cancer in immunosuppressed dogs to investigate molecular imaging, focal therapy of prostate cancer, and metastasis to lymph nodes, lungs and bone.

Organism Dog (Canine)
Tissue Prostate
Donor History Male, Prostate carcinoma
Growth Properties Adherent, epithelial
Cell Type Tumor Cells
Unit 1x10⁶ cells / 1.0 ml
Storage Condition Vapor phase of liquid nitrogen, or below -130°C.
Shipping Conditions Ship with dry ice.
Product Format Frozen
Intended Use This product is intended for laboratory research use only. It is not intended for any animal or human therapeutic use, any human or animal consumption, or any diagnostic use.
BioSafety II
Certificate of Analysis For batch-specific test results, refer to the applicable certificate of analysis that can be found at www.abmgood.com.
Growth Conditions Applied Cell Extracellular Matrix (G422) is required for cell adhesion to the culture vessels. PriGrow IV (TM004) + 10% FBS + 1% Penicillin/Streptomycin Solution (G255), 37.0°C, 5% CO₂
Unpacking and Storage Instructions

1. Visually examine the packaging containers for signs of leakage or breakage.

2. Immediately transfer frozen cells from dry ice packaging to a temperature below -130°C, preferably in liquid nitrogen vapor phase storage, until ready for use.

To ensure the highest level of viability, thaw the vial and initiate culture as soon as possible upon receipt. If continued storage is desired, the vial should only be stored below -130°C or in liquid nitrogen vapor phase. Do not store at -70°C, as it will result in loss of viability.


Thawing Protocol

1. Thaw cells quickly in a 37°C water bath while agitating gently (maximum 2 minutes). The vial cap should be kept above the water level to minimize the risk of contamination.

2. Decontaminate the vial by spraying and wiping the exterior of the vial with 70% ethanol. From this point onwards, all operations should be strictly carried out inside a biological safety cabinet using aseptic conditions.

3. Transfer the cell suspension into a 15ml sterile conical tube containing 5ml of pre-warmed, complete growth media. Centrifuge cells at 125xg for 5-7 minutes.

4. Aspirate the supernatant without disturbing the cell pellet. Re-suspend the cell pellet in the recommended pre-warmed, complete growth media and dispense into a T25 culture flask.

5. Incubate the cells at the recommended conditions.

Subculture Protocol

Volumes given below are for a T75 flask; proportionally increase or decrease the volume as required per culture vessel size. Subculture cells once the culture vessel is 80% confluent.

1. Aspirate the culture media, and add 2-3ml of pre-warmed 0.25% Trypsin-EDTA to the culture vessel.

2. Observe the cells under a microscope to confirm detachment (typically within 2-10 minutes). Cells that are difficult to detach can be put in 37°C, for several minutes to facilitate detachment.

3. Neutralize Trypsin-EDTA by adding an equal volume of the complete growth media into the culture vessel.

4. Transfer the culture suspension into a sterile centrifuge tube, and centrifuge at 125xg for 5 minutes. The actual centrifuge duration and speed may vary depending on the cell type.

5. Aspirate the supernatant, and re-suspend the pellet with pre-warmed fresh complete growth media. Add appropriate aliquots of the cell suspension to new culture vessels, as desired.

6. Incubate the cells at the recommended conditions.

Cryopreservation Cryopreservation Medium (TM024), or complete growth media with 10% DMSO.
Seeding Density (cells/cm2) 10,000
Split Ratio 1:4 or 1:8
Population Doubling Time (h) 38 - 48
Expression FOLH1, MYOF, PTEN1, RUNX2
Material Citation If use of this material results in a scientific publication, please cite the material in the following manner: Applied Biological Materials Inc, Cat. No. T8280.
Warranty abm warrants that cell lines shall be viable upon initiation of culture for a period of thirty (30) days after shipment and that they shall meet the specifications on the applicable abm Material Product Information sheet, certificate of analysis, and/or catalog description. Such thirty (30) day period is referred to herein as the "Warranty Period”.
Disclaimer
1. All test parameters provided in the CoA are conducted using abm's standardized culture system and The stated values may vary under the end-user's culture conditions. Please verify that the product is suitable for your studies by referencing published papers or ordering RNA (0.5 μg, Cat.# C207, $450.00) or cell lysate (100 μg, Cat.# C206, $600.00) to perform preliminary experiments, or alternatively use our Gene Expression Assay Service (Cat# C138). All sales are final.

2. We recommend live cell shipments for ease of cell transfer and this option can be requested at the time of order placement. Please note that the end-user will need to evaluate the feasibility of live cell shipment by taking into account the final destination's temperature variation and its geographical location.

3. All of abm's cell biology products are for research use ONLY and NOT for therapeutic/diagnostic applications. abm is not liable for any repercussions arising from the use of its cell biology product(s) in therapeutic/diagnostic or any other non-RUO application(s).

4. abm makes no warranties or representations as to the accuracy of the information on this site. Citations from literature are provided for informational purposes only. abm does not warrant that such information has been shown to be accurate.

5. abm warrants that cell lines shall be viable upon initiation of culture for a period of thirty (30) days after shipment and that they shall meet the specifications on the applicable abm Material Product Information sheet, certificate of analysis, and/or catalog description. Such thirty (30) day period is referred to herein as the "Warranty Period".
Depositor Ohio State Innovation Foundation
Application Research Use Only.
Material Citation If use of this material results in a scientific publication, please cite the material in the following manner: Applied Biological Materials Inc, Cat. No. T8280
Print & Download Datasheet
  • Halvorson, K. G., Kubota, K., Sevcik, M. A., Lindsay, T. H., Sotillo, J. E., Ghilardi, J. R., Rosol, T. J., Boustany, L., Shelton, D. L., & Mantyh, P. W. (2005). A blocking antibody to nerve growth factor attenuates skeletal pain induced by prostate tumor cells growing in bone. Cancer research, 65(20), 9426–9435. https://doi.org/10.1158/0008-5472.CAN-05-0826


    Halvorson, K. G., Sevcik, M. A., Ghilardi, J. R., Rosol, T. J., & Mantyh, P. W. (2006). Similarities and differences in tumor growth, skeletal remodeling and pain in an osteolytic and osteoblastic model of bone cancer. The Clinical journal of pain, 22(7), 587–600. https://doi.org/10.1097/01.ajp.0000210902.67849.e6


    LeRoy, B. E., Thudi, N. K., Nadella, M. V., Toribio, R. E., Tannehill-Gregg, S. H., van Bokhoven, A., Davis, D., Corn, S., & Rosol, T. J. (2006). New bone formation and osteolysis by a metastatic, highly invasive canine prostate carcinoma xenograft. The Prostate, 66(11), 1213–1222. https://doi.org/10.1002/pros.20408


    Alvarez, F. J., Murahari, S., Couto, C. G., Rosol, T. J., Kulp, S. K., Chen, C. S., & Kisseberth, W. C. (2007). 3-Phosphoinositide-dependent protein kinase-1/Akt signalling and inhibition in a canine prostate carcinoma cell line. Veterinary and comparative oncology, 5(1), 47–58. https://doi.org/10.1111/j.1476-5829.2006.00117.x


    Thudi, N. K., Martin, C. K., Nadella, M. V., Fernandez, S. A., Werbeck, J. L., Pinzone, J. J., & Rosol, T. J. (2008). Zoledronic acid decreased osteolysis but not bone metastasis in a nude mouse model of canine prostate cancer with mixed bone lesions. The Prostate, 68(10), 1116–1125. https://doi.org/10.1002/pros.20776


    Jimenez-Andrade, J. M., Bloom, A. P., Stake, J. I., Mantyh, W. G., Taylor, R. N., Freeman, K. T., Ghilardi, J. R., Kuskowski, M. A., & Mantyh, P. W. (2010). Pathological sprouting of adult nociceptors in chronic prostate cancer-induced bone pain. The Journal of neuroscience : the official journal of the Society for Neuroscience, 30(44), 14649–14656. https://doi.org/10.1523/JNEUROSCI.3300-10.2010


    Jimenez-Andrade, J. M., Bloom, A. P., Stake, J. I., Mantyh, W. G., Taylor, R. N., Freeman, K. T., Ghilardi, J. R., Kuskowski, M. A., & Mantyh, P. W. (2010). Pathological sprouting of adult nociceptors in chronic prostate cancer-induced bone pain. The Journal of neuroscience : the official journal of the Society for Neuroscience, 30(44), 14649–14656. https://doi.org/10.1523/JNEUROSCI.3300-10.2010


    Jimenez-Andrade, J. M., Ghilardi, J. R., Castañeda-Corral, G., Kuskowski, M. A., & Mantyh, P. W. (2011). Preventive or late administration of anti-NGF therapy attenuates tumor-induced nerve sprouting, neuroma formation, and cancer pain. Pain, 152(11), 2564–2574. https://doi.org/10.1016/j.pain.2011.07.020


    Li, X., Liao, J., Park, S. I., Koh, A. J., Sadler, W. D., Pienta, K. J., Rosol, T. J., & McCauley, L. K. (2011). Drugs which inhibit osteoclast function suppress tumor growth through calcium reduction in bone. Bone, 48(6), 1354–1361. https://doi.org/10.1016/j.bone.2011.03.687


    Stokol, T., Daddona, J. L., Mubayed, L. S., Trimpert, J., & Kang, S. (2011). Evaluation of tissue factor expression in canine tumor cells. American journal of veterinary research, 72(8), 1097–1106. https://doi.org/10.2460/ajvr.72.8.1097


    Thudi, N. K., Martin, C. K., Murahari, S., Shu, S. T., Lanigan, L. G., Werbeck, J. L., Keller, E. T., McCauley, L. K., Pinzone, J. J., & Rosol, T. J. (2011). Dickkopf-1 (DKK-1) stimulated prostate cancer growth and metastasis and inhibited bone formation in osteoblastic bone metastases. The Prostate, 71(6), 615–625. https://doi.org/10.1002/pros.21277


    Hojjat, S. P., Foltz, W., Wise-Milestone, L., & Whyne, C. M. (2012). Multimodal μCT/μMR based semiautomated segmentation of rat vertebrae affected by mixed osteolytic/osteoblastic metastases. Medical physics, 39(5), 2848–2853. https://doi.org/10.1118/1.3703590


    Park, S. I., & McCauley, L. K. (2012). Nuclear localization of parathyroid hormone-related peptide confers resistance to anoikis in prostate cancer cells. Endocrine-related cancer, 19(3), 243–254. https://doi.org/10.1530/ERC-11-0278


    Schade, G. R., Keller, J., Ives, K., Cheng, X., Rosol, T. J., Keller, E., & Roberts, W. W. (2012). Histotripsy focal ablation of implanted prostate tumor in an ACE-1 canine cancer model. The Journal of urology, 188(5), 1957–1964. https://doi.org/10.1016/j.juro.2012.07.006


    Senapati, S., Chakraborty, S., Nath, I., K Panda, S., C Patra, R., & K Batra, S. (2012). Non-human prostate cancer cell lines. Oncology, Gastroenterology and Hepatology Reports, 1(1), 15–24. doi:10.5530/ogh.2012.1.5


    Wise-Milestone, L., Akens, M. K., Lo, V. C., Yee, A. J., Wilson, B. C., & Whyne, C. M. (2012). Local treatment of mixed osteolytic/osteoblastic spinal metastases: is photodynamic therapy effective?. Breast cancer research and treatment, 133(3), 899–908. https://doi.org/10.1007/s10549-011-1854-y


    Wise-Milestone, L., Akens, M. K., Rosol, T. J., Hojjat, S. P., Grynpas, M. D., & Whyne, C. M. (2012). Evaluating the effects of mixed osteolytic/osteoblastic metastasis on vertebral bone quality in a new rat model. Journal of orthopaedic research : official publication of the Orthopaedic Research Society, 30(5), 817–823. https://doi.org/10.1002/jor.21577


    Axiak-Bechtel, S. M., Kumar, S. R., Dank, K. K., Clarkson, N. A., Selting, K. A., Bryan, J. N., Rosol, T. J., Espinosa, J., & Decedue, C. J. (2013). Nanoparticulate paclitaxel demonstrates antitumor activity in PC3 and Ace-1 aggressive prostate cancer cell lines. Investigational new drugs, 31(6), 1609–1615. https://doi.org/10.1007/s10637-013-0006-0


    Keller, J. M., Schade, G. R., Ives, K., Cheng, X., Rosol, T. J., Piert, M., Siddiqui, J., Roberts, W. W., & Keller, E. T. (2013). A novel canine model for prostate cancer. The Prostate, 73(9), 952–959. https://doi.org/10.1002/pros.22642


    Dai, J., Zhang, H., Karatsinides, A., Keller, J. M., Kozloff, K. M., Aftab, D. T., Schimmoller, F., & Keller, E. T. (2014). Cabozantinib inhibits prostate cancer growth and prevents tumor-induced bone lesions. Clinical cancer research : an official journal of the American Association for Cancer Research, 20(3), 617–630. https://doi.org/10.1158/1078-0432.CCR-13-0839


    Wu, L. Y., Johnson, J. M., Simmons, J. K., Mendes, D. E., Geruntho, J. J., Liu, T., Dirksen, W. P., Rosol, T. J., Davis, W. C., & Berkman, C. E. (2014). Biochemical characterization of prostate-specific membrane antigen from canine prostate carcinoma cells. The Prostate, 74(5), 451–457. https://doi.org/10.1002/pros.22727


    Ding, H., Kothandaraman, S., Gong, L., Williams, M. M., Dirksen, W. P., Rosol, T. J., & Tweedle, M. F. (2016). A human GRPr-transfected Ace-1 canine prostate cancer model in mice. The Prostate, 76(9), 783–795. https://doi.org/10.1002/pros.23172


    Elshafae, S. M., Hassan, B. B., Supsavhad, W., Dirksen, W. P., Camiener, R. Y., Ding, H., Tweedle, M. F., & Rosol, T. J. (2016). Gastrin-releasing peptide receptor (GRPr) promotes EMT, growth, and invasion in canine prostate cancer. The Prostate, 76(9), 796–809. https://doi.org/10.1002/pros.23154


    Elshafae, S. M., Kohart, N. A., Altstadt, L. A., Dirksen, W. P., & Rosol, T. J. (2017). The Effect of a Histone Deacetylase Inhibitor (AR-42) on Canine Prostate Cancer Growth and Metastasis. The Prostate, 77(7), 776–793. https://doi.org/10.1002/pros.23318


    Tweedle, M. F., Ding, H., Drost, W. T., Dowell, J., Spain, J., Joseph, M., Elshafae, S. M., Menendez, M. I., Gong, L., Kothandaraman, S., Dirksen, W. P., Wright, C. L., Bahnson, R., Knopp, M. V., & Rosol, T. J. (2018). Development of an orthotopic canine prostate cancer model expressing human GRPr. The Prostate, 10.1002/pros.23686. Advance online publication. https://doi.org/10.1002/pros.23686


    Atkins, A., Burke, M., Samiezadeh, S., Akens, M. K., Hardisty, M., & Whyne, C. M. (2019). Elevated Microdamage Spatially Correlates with Stress in Metastatic Vertebrae. Annals of biomedical engineering, 47(4), 980–989. https://doi.org/10.1007/s10439-018-02188-8


    Bachawal, S. V., Park, J. M., Valluru, K. S., Loft, M. D., Felt, S. A., Vilches-Moure, J. G., Saenz, Y. F., Daniel, B., Iagaru, A., Sonn, G., Cheng, Z., Spielman, D. M., & Willmann, J. K. (2019). Multimodality Hyperpolarized C-13 MRS/PET/Multiparametric MR Imaging for Detection and Image-Guided Biopsy of Prostate Cancer: First Experience in a Canine Prostate Cancer Model. Molecular imaging and biology, 21(5), 861–870. https://doi.org/10.1007/s11307-018-1235-6

This product has no review yet.
Controls and Related Product:

CAT.NO
G299
UNIT
10 Flasks
PRICE
$58.00

CAT.NO
G422
UNIT
25ml
PRICE
$310.00

CAT.NO
G255
UNIT
100ml
PRICE
$42.00

CAT.NO
TM024
UNIT
100ml
PRICE
$180.00

CAT.NO
TM001
UNIT
500 ml
PRICE
$131.00

CAT.NO
TM002
UNIT
500 ml
PRICE
$131.00

CAT.NO
TM003
UNIT
500 ml
PRICE
$131.00

CAT.NO
TM004
UNIT
500 ml
PRICE
$131.00
Other Cell Lines
SEARCH RESULT