pLenti-CMV-RFP-2A-Puro-Blank Vector

LV5911.0 µg


DescriptionEmpty versions of our most popular vectors to use as a control during your lentiviral experiments.
Unit quantity1.0 µg
Bacterial SelectionKanamycin
SystemLentiviral Vector
Vector MappLenti-CMV-RFP-2A-Puro-Blank
CautionNot for diagnostic use.

Is the 10 ml of quantity for lentivirus or vector? I'd like to get a lenti vector expresses both GFP and my gene of interest like neuroglobin.I will use the lenti vector with packaging vectors to make virus in 293T cells, and then to transduce my target cells with the virus. Can you make the vector for me?
The 10ml is ready-to-use lentivirus. For your second question, we offer custom gene cloning at affordable prices. If you have your gene in your plasmid with a compatible site with our vector, the subcloning will be $450 per construct. An extra cost will be charged if we have to find the gene for you.
What is the EGFP Lentivirus Map (cat#LV006)?
It is cloned in a Lenti-His vector using EcoRI and XhoI cut sites. There is a stop codon at the end of the the EGFP gene so the tag is not expressed.
What is the wave length the GFP gene?
Our GFP has a excitation of 488 nm and emission of 507 nm.
About the infection protocol, how many infections can I do with the 10ml preparation?
Based on the instruction coming with the package, 2ml is need for a 6-well, thus the 10ml is only enough for 5 infections. This is likely to be enough for generating a stable cell line.
If I transfect or infect with an EGFP construct, when will I begin to observe fluorescence?
Enhanced green fluorescent protein (EGFP), often used to check transfection efficiency or viral titer, can be visualized in packaging cells 24-48 hours after transfection. In target cells, EGFP is usually detected 48-96 hours after infection, depending on the cell type and infection efficiency.
What is the source for the luciferase gene on the Lenti-UBC-Luc Lentivirus (Cat#LV051)?
It is from firefly. Luc2 emission spectrum peaks at 600nm in mammalian cells. The substrate is regular D-luciferin.
How is the IRES-EGFP construct signal compare to the normal GFP control?
EGFP signal is much weaker due to IRES elements. The levels of EGFP expression is effected by surrounding genetic elements regardless of the high viral particles.
Can the expression of the lentiviral vector differ among different cellines (for eg,HeLa,MCF 7,293T etc)
Yes, like transfection, lentiviral vector transduction efficiency is cell line dependent. 293T will have the highest transduction efficiency.
Are your pPB protein expression vectors high or low copy number plasmids?
Our protein expression vectors are medium copy number plasmids and can be amplified using any standard miniprep or midi/maxi prep kits. There is no standard protocol that fits all proteins, therefore recombinant protein expression will need to be optimized and determined experimentally.
Are the WPRE and cPPT elements present?
Both elements are present in all of our pLenti-III vectors. The WPRE is located immediately after the Puromycin marker (between the Puromycin and the 3'LTR). The cPPT is located immediately before the promoter (UbC/PGK/EF1a), between the 5'LTR and the promoter.
What are the restriction sites for Cat. No. LV590?
This construct has AflII and AvrII sites. AflII is a 2 cutter for the vector and AvrII is a single cutter. AflII will yield 2 bands at ~4.7kb and ~4.1kb. AvrII will yield a single band at ~8.8kb. If you cut with both of these enzymes, you may expect ~1.6kb, ~3.1kb, ~4.1kb bands.
What do I use to package your lentiviral vector?
We have two lentiviral packaging systems that are available for researchers to use: Second Generation - Higher Titer Capability - Third Generation - Higher Safety Features -
For Cat# LV152, is the 3'LTR region truncated?
No, this is a 2nd generation construct and the 3'LTR region is not truncated.
When the protein is expressed from this vector, which enzyme do I need to use to remove my tag?
The enzyme required to remove the tag (if possible) will depend upon the vector backbone corresponding to your product: 1) pPB-C-His: the His tag is NOT cleavable. 2) pPB-His-GST: the His-GST tag can be cleaved using TEV protease. 3) pPB-His-MBP: the His-MBP tag can be cleaved using TEV protease. 4) pPB-N-His: the His tag can be cleaved with Thrombin. 5) pPM-C-HA: the HA tag is NOT cleavable. 6) pPM-C-His: the His tag is NOT cleavable. 7) pPM-N-D-C-HA: the N-terminal D-tag can be cleaved using TEV protease. The C-terminal HA tag is NOT cleavable. 8) pPM-N-D-C-His: the N-terminal D-tag can be cleaved using TEV protease. The C-terminal His tag is NOT cleavable. Please see the following page for further details:
What is the difference between Luc2 and regular Luc?
Luc2 is an engineered firefly luciferase, which is engineered to remove most cryptic transcription factor binding site and improve mammalian expression.

  • Ordelheide, AM et al. "Nor-1, a novel incretin-responsive regulator of insulin genes and insulin secretion" Mol Metab 2(3):243-55 (2013). DOI: 10.1016/j.molmet.2013.06.003. PubMed: 24044104.
  • Lee, MS et al. "Exploitation of the Complement System by Oncogenic Kaposi's Sarcoma-Associated Herpesvirus for Cell Survival and Persistent Infection " PLOS Pathogens 10 (9):e1004412 (2014). DOI: 10.1371/journal.ppat.1004412. PubMed: 25254972. Application: Control Vector.
  • Lellahi, SM. "POU3f2 in human gliomas - Expression pattern and functional role" Bergen Open Research Archive Thesis: (2014).
  • Davoodian, N et al. "MicroRNA-122 Overexpression Promotes Hepatic Differentiation of Human Adipose Tissue-Derived Stem Cells" J. Cell. Biochem 115 (9):1582–1593 (2014). DOI: 10.1002/jcb.24822. PubMed: 24733606.
  • Chen, HH et al. "IRF2BP2 Reduces Macrophage Inflammation and Susceptibility to Atherosclerosis" Circ Res 8:671-683 (2015). DOI: 10.1161/CIRCRESAHA.114.305777.
  • Song, J et al. "miR-370 and miR-373 regulate the pathogenesis of osteoarthritis by modulating one-carbon metabolism via SHMT-2 and MECP-2, respectively" Aging Cell 5:826-837 (2015). DOI: 10.1111/acel.12363.
  • Martiskainen, H. "Polygenic Risk Scores, Transcriptomics, and Molecular Mechanisms of Alzheimer’s Disease Related Risk Genes" University of Eastern Finland: Dissertations in Health Sciences 306: (2015).
  • Manshouri, R., Coyaud, E., Kundu, S. T., Peng, D. H., Stratton, S. A., Alton, K., ... & Carugo, A. "ZEB1/NuRD complex suppresses TBC1D2b to stimulate E-cadherin internalization and promote metastasis in lung cancer" Nature communications 10(1):1-15 (2019).
  • Nihalani, D., Solanki, A. K., Arif, E., Srivastava, P., Rahman, B., Zuo, X., … Lipschutz, J. H. "Disruption of the exocyst induces podocyte loss and dysfunction" Journal of Biological Chemistry 294(26):10104–10119 (2019). DOI: 10.1074/jbc.ra119.008362.
  • Nischalke, H. D., Lutz, P., Bartok, E., Krämer, B., Langhans, B., Frizler, R., ... & Stickel, F. "The PNPLA3 I148M variant promotes lipid-induced hepatocyte secretion of CXC chemokines establishing a tumorigenic milieu" Journal of Molecular Medicine 1-12: (2019).
  • Peruzzaro, S.T., Andrews, M.M.M., Al-Gharaibeh, A. "doi:10" 1186/s12974-018-1383-2 : (2019). DOI: 10.1186/s12974-018-1383-2.
  • Rahnama, M. A., Movassaghpour, A. A., Soleimani, M., Atashi, A., Anbarlou, A., & Asenjan, K. S. "MicroRNA-15b target Sall4 and diminish in vitro UCB-derived HSCs expansion"  EXCLI journal  14:601 (2015).
  • Sarret, C., Ashkavand, Z., Paules, E., Dorboz, I., Pediaditakis, P., Sumner, S., … Krupenko, S. A. "Deleterious mutations in ALDH1L2 suggest a novel cause for neuro-ichthyotic syndrome" Npj Genomic Medicine 4(1): (2019). DOI: 10.1038/s41525-019-0092-9.
  • Spörrer, M., Prochnicki, A., Tölle, R. C., Nyström, A., Esser, P. R., Homberg, M., … Kiritsi, D. "Treatment of keratinocytes with 4-phenylbutyrate in epidermolysis bullosa: Lessons for therapies in keratin disorders" EBioMedicine 44:502–515 (2019). DOI: 10.1016/j.ebiom.2019.04.062.
  • Wang, . "U" S. Patent Application No. 0071651 A1 : (2019).
  • Vasudevan, A., Baruah, P. S., Smith, J. C., Wang, Z., Sayles, N. M., Andrews, P., ... & Storchová, Z. "Single chromosome gains can function as metastasis suppressors and metastasis promoters" bioRxiv 590547: (2019).
  • Von Dwingelo, J., Chung, I. Y. W., Price, C. T., Li, L., Jones, S., Cygler, M., & Abu Kwaik, Y. "Interaction of the Ankyrin H Core Effector of Legionella with the Host LARP7 Component of the 7SK snRNP Complex" mBio 10(4): (2019). DOI: 10.1128/mbio.01942-19.
  • Wang, H. H., Wu, Y. J., Tseng, Y. M., Su, C. H., Hsieh, C. L., & Yeh, H. I. "Mitochondrial fission protein 1 up-regulation ameliorates senescence-related endothelial dysfunction of human endothelial progenitor cells" Angiogenesis 1-14: (2019).
  • Zhang, L., Irimia, A., He, L., Landais, E., Rantalainen, K., Leaman, D. P., ... & Poignard, P. "An MPER antibody neutralizes HIV-1 using germline features shared among donors" Nature Communications 10(1):1-16 (2019).
  • Zhang, R.. "N6-methylation of adenosine (m6A) of FZD10 mRNA contributes to PARP inhibitor resistance" AACR. Doi:10.1158/0008-5472 : (2019).
  • Zhang, Y. L., Zhou, H. Y., Ma, Q. Z. "US Patent No" 20190135937A1. Retrieved from : (2018).